Definitions

Definition 1. A **truth assignment** is a function from the propositional variables $\{p_1, p_2, \dots\}$ to $\{T, F\}$. (In other words, we assign a value of T or F to each propositional variable.)

Definition 2. A formula A is said to be a **tautology** if for every truth assignment ϕ , $\phi(A) = T$.

Definition 3. A formula A is said to be a **satisfiable** if for some truth assignment ϕ , $\phi(A) = T$; we say ϕ **satisfies** A, or A is **satisfied** by ϕ .

Definition 4. Let S be a set of formulas. A truth assignment ϕ satisfies S if for every $A \in S$, $\phi(A) = T$. S is said to be a satisfiable if there exists a truth assignment that satisfies S.

Definition 5. Let B be a formula, and S a set of formulas. We say B is a **tautological consequence** of S if every truth assignment that satisfies S also satisfies B; we write $S \models B$.

Definition 6. Two formulas A and B are said to be **log**ically equivalent iff the formula $(A \leftrightarrow B)$ is a tautology.

Definition 7. An *n*-ary truth function is a function from $\{T, F\}^n \to \{T, F\}$.

Definition 8. A given set of connectives is said to be adequate iff for every truth function $G : \{T, F\}^n \rightarrow \{T, F\}$, there exists a formula A that uses only the given connectives, such that $H_A = G$.

Definition 9. We agree on the following abbreviations: **1**. $\neg(\neg A \lor \neg B)$ is abbreviated by $A \land B$. **2**. $(\neg A \lor B)$ is abbreviated by $A \rightarrow B$. **3**. $(A \rightarrow B) \land (B \rightarrow A)$ is abbreviated by $A \leftrightarrow B$.

Definition 10. Let S be a set of formulas. To give a **proof** of a formula B **using** the formulas in S means to write a list of formulas such that: 1. Each formula in the list is either an axiom or is in S or is obtained from the previous formulas in the list by rules of inference. 2. The last formula in the list is B. We write: $S \vdash B$ (read: S proves B). If S happens to be the empty set, i.e., we are not using any formulas as hypothesis, then we write $\vdash B$, which says that B can be proved from just the axioms and rules of inference, without using any hypotheses. For emphasis, we sometimes write \vdash_P instead of \vdash .

Definition 11. Let S be a set of formulas. If $\exists B$ such that $S \vdash B$ and $S \vdash \neg B$, then we say S is **inconsistent**. If there is no such B, then we say S is **consistent**.

Definition 12. A formal system is said to be **decidable** if there is an algorithm (a systematic method) for deciding whether any given formula has a proof or not.

Definition 13. We say that two sets S and T are **equipotent** or have the **same size**, written as |S| = |T| or $S \approx T$, iff there exists a bijection $f: S \to T$.

Definition 14. Any set that has the same size as \mathbb{N} is said to be **denumerable**. A set is called **countable** if it's either finite or denumerable. A set is called **uncountable** if it is not countable.

Definition 15. Suppose S and T are sets, and $f: S \to T$ a map. If f is 1-1, we write $|S| \leq |T|$. If f is onto, we write $|S| \geq |T|$.

Definition 16. For any formula A, " $\exists x_i A$ " stands for " $\neg \forall x_i \neg A$."

Definition 17. A formula in a FOL L is said to be **logically valid (LV)** if it is true in every interpretation of L.

Definition 18. Let A and B be two formulas in some FOL L. We say A and B are logically equivalent (LE) if the formula $A \leftrightarrow B$ is logically valid.

Definition 19. (Not in our book) Suppose A is a formula that contains free variables. Then A is **true** in an interpretation iff its closure is true in that interpretation.

Definition 20. (Informal) Suppose A is a formula that contains free variables. The **closure** of A is obtained by quantifying every free variable of A with a \forall .

Definition 21. Suppose A has free variables. A is false in an interpretation iff $\neg A$ is true in that interpretation.

Definition 22. (Informal) A term t is said to be **substitutable** for x in A if no variable in t becomes bound after the substitution.

Definition 23. (Differs from book) If A is true in every model of Γ , then we denote this by $\Gamma \models A$. If $\Gamma = \phi$, then we write $\models A$, which means A is true in every interpretation of L.

Definition 24. A set Γ of formulas in L is **consistent** iff there is no formula A such that Γ proves both A and $\neg A$.

Definition 25. The argument form $A_1, \dots, A_n \therefore B$ is said to be valid iff $\{A_1, \dots, A_n\} \models B$.

Definition 26. (Informal) A relation is said to be **decid-able** if there is an algorithm for deciding whether the relation is true or false for any given input; i.e., given any input, the algorithm will stop after finitely many steps and give an output of YES or NO (or T or F).

Definition 27. (Informal) A relation R is semidecidable if there is an algorithm that, given any input x, stops with output YES if R(x) = T, and doesn't stop if R(x) = F.

Theorems

Theorem 1. $(A_1 \land \dots \land A_n) \to B$ is a tautology iff $\{A_1, \dots, A_n\} \models B$

Theorem 2. (Replacement Theorem) Suppose A and B are logically equivalent formulas, and C is a formula in which A appears. Then, if we replace A with B in C, we obtain a formula that is logically equivalent to C.

Theorem 3. (Adequacy Theorem for connectives) The set of connectives $\{\neg, \lor\}$ is adequate. The set of connectives $\{\neg, \land\}$ is also adequate.

Theorem 4. (The Soundness Theorem for P: Special case) Every theorem of Propositional Logic is a tautology; i.e., for every formula A, if $\vdash A$, then $\models A$.

Theorem 5. (The Soundness Theorem for P: General case) Let S be any set of formulas. Then every theorem of S is a tautological consequence of S; i.e., for every formula A, if $S \vdash A$, then $S \models A$.

Theorem 6. (The Adequacy Theorem for P: Special Case) Every tautology is a theorem of Propositional Logic; i.e., for every formula A, if $\models A$, then $\vdash A$.

Theorem 7. (The Adequacy Theorem for P: General Case) Let S be any set of formulas. If $S \models A$, then $S \vdash A$.

Theorem 8. If |S| = |T| and T is denumerable, then S is denumerable.

Theorem 9. If $S \subset T$ and T is countable, then S is countable.

Theorem 10. If $f: S \to T$ is onto and S is countable, then T is countable.

Theorem 11. If $f : S \to T$ is 1-1 and T is countable, then S is countable.

Theorem 12. (George Cantor) \mathbb{R} is uncountable.

Theorem 13. (Compactness Theorem, Version I) Let Γ be an infinite set of formulas. If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Theorem 14. (Compactness Theorem, Version II) Let Γ be an infinite set of formulas, A any formula. If $\Gamma \models A$, then Γ has a finite subset Δ such that $\Delta \models A$.

Theorem 15. If $A \lor B$ is true in an interpretation I, and if x does not occur free in A, then $A \lor \forall xB$ is true in I.

Theorem 16. (Soundness Theorem for first order logic) If $\Gamma \vdash A$, then $\Gamma \models A$.

Theorem 17. First order logic is consistent; i.e., for any first order language L, there is no formula A in L such that $\vdash A$ and $\vdash \neg A$.

Theorem 18. Γ has a model iff it's consistent.

Theorem 19. The argument form $A_1, \dots, A_n \therefore B$ is valid iff $\{A_1, \dots, A_n\} \vdash B$.