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De¯nitions

De¯nition 1. A truth assignment is a function from
the propositional variables fp1; p2; ¢ ¢ ¢g to fT;Fg. (In
other words, we assign a value of T or F to each propo-
sitional variable.)

De¯nition 2. A formula A is said to be a tautology if
for every truth assignment Á, Á(A) = T.

De¯nition 3. A formula A is said to be a satis¯able
if for some truth assignment Á, Á(A) = T; we say Á
satis¯es A, or A is satis¯ed by Á.

De¯nition 4. Let S be a set of formulas. A truth as-
signment Á satis¯es S if for every A 2 S, Á(A) = T. S
is said to be a satis¯able if there exists a truth assign-
ment that satis¯es S.

De¯nition 5. Let B be a formula, and S a set of formu-
las. We say B is a tautological consequence of S if
every truth assignment that satis¯es S also satis¯es B;
we write S j= B.

De¯nition 6. Two formulas A and B are said to be log-
ically equivalent i® the formula (A$ B) is a tautol-
ogy.

De¯nition 7. An n-ary truth function is a function
from fT;Fgn ! fT;Fg.
De¯nition 8. A given set of connectives is said to be
adequate i® for every truth function G : fT;Fgn !
fT;Fg, there exists a formula A that uses only the given
connectives, such that HA = G.

De¯nition 9. We agree on the following abbreviations:
1. :(:A _ :B) is abbreviated by A ^ B. 2. (:A _ B)
is abbreviated by A ! B. 3. (A ! B) ^ (B ! A) is
abbreviated by A$ B.

De¯nition 10. Let S be a set of formulas. To give a
proof of a formula B using the formulas in S means
to write a list of formulas such that: 1. Each formula in
the list is either an axiom or is in S or is obtained from
the previous formulas in the list by rules of inference.
2. The last formula in the list is B. We write: S ` B
(read: S proves B). If S happens to be the empty set,
i.e., we are not using any formulas as hypothesis, then
we write ` B, which says that B can be proved from
just the axioms and rules of inference, without using
any hypotheses. For emphasis, we sometimes write `P

instead of `.

De¯nition 11. Let S be a set of formulas. If 9B such
that S ` B and S ` :B, then we say S is inconsistent.
If there is no such B, then we say S is consistent.

De¯nition 12. A formal system is said to be decidable
if there is an algorithm (a systematic method) for de-
ciding whether any given formula has a proof or not.

De¯nition 13. We say that two sets S and T are
equipotent or have the same size, written as jSj = jT j
or S ¼ T , i® there exists a bijection f : S ! T .

De¯nition 14. Any set that has the same size as N is
said to be denumerable. A set is called countable
if it's either ¯nite or denumerable. A set is called un-
countable if it is not countable.

De¯nition 15. Suppose S and T are sets, and f : S ! T
a map. If f is 1-1, we write jSj · jT j. If f is onto, we
write jSj ¸ jT j.
De¯nition 16. For any formula A, \9xiA" stands for
\:8xi:A."

De¯nition 17. A formula in a FOL L is said to be logi-
cally valid (LV) if it is true in every interpretation of
L.

De¯nition 18. Let A and B be two formulas in some
FOL L. We sayA andB are logically equivalent (LE)
if the formula A$ B is logically valid.

De¯nition 19. (Not in our book) Suppose A is a for-
mula that contains free variables. Then A is true in an
interpretation i® its closure is true in that interpreta-
tion.

De¯nition 20. (Informal) Suppose A is a formula that
contains free variables. The closure of A is obtained
by quantifying every free variable of A with a 8.
De¯nition 21. Suppose A has free variables. A is false
in an interpretation i® :A is true in that interpretation.

De¯nition 22. (Informal) A term t is said to be substi-
tutable for x in A if no variable in t becomes bound
after the substitution.

De¯nition 23. (Di®ers from book) If A is true in every
model of ¡, then we denote this by ¡ j= A. If ¡ = Á,
then we write j= A, which means A is true in every
interpretation of L.

De¯nition 24. A set ¡ of formulas in L is consistent
i® there is no formula A such that ¡ proves both A and
:A.

De¯nition 25. The argument form A1; ¢ ¢ ¢ ; An ) B is
said to be valid i® fA1; ¢ ¢ ¢ ; Ang j= B.

De¯nition 26. (Informal) A relation is said to be decid-
able if there is an algorithm for deciding whether the
relation is true or false for any given input; i.e., given
any input, the algorithm will stop after ¯nitely many
steps and give an output of YES or NO (or T or F).

De¯nition 27. (Informal) A relation R is semidecid-
able if there is an algorithm that, given any input x,
stops with output YES if R(x) = T, and doesn't stop if
R(x) = F.
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Theorems

Theorem 1. (A1 ^ ¢ ¢ ¢ ^ An) ! B is a tautology i®
fA1; ¢ ¢ ¢ ; Ang j= B

Theorem 2. (Replacement Theorem) Suppose A and B
are logically equivalent formulas, and C is a formula in
which A appears. Then, if we replace A with B in C,
we obtain a formula that is logically equivalent to C.

Theorem 3. (Adequacy Theorem for connectives) The
set of connectives f:;_g is adequate. The set of con-
nectives f:;^g is also adequate.

Theorem 4. (The Soundness Theorem for P: Special
case) Every theorem of Propositional Logic is a tau-
tology; i.e., for every formula A, if ` A, then j= A.

Theorem 5. (The Soundness Theorem for P: General
case) Let S be any set of formulas. Then every the-
orem of S is a tautological consequence of S; i.e., for
every formula A, if S ` A, then S j= A.

Theorem 6. (The Adequacy Theorem for P: Special
Case) Every tautology is a theorem of Propositional
Logic; i.e., for every formula A, if j= A, then ` A.

Theorem 7. (The Adequacy Theorem for P: General
Case) Let S be any set of formulas. If S j= A, then
S ` A.

Theorem 8. If jSj = jT j and T is denumerable, then S
is denumerable.

Theorem 9. If S ½ T and T is countable, then S is
countable.

Theorem 10. If f : S ! T is onto and S is countable,
then T is countable.

Theorem 11. If f : S ! T is 1-1 and T is countable,
then S is countable.

Theorem 12. (George Cantor) R is uncountable.

Theorem 13. (Compactness Theorem, Version I) Let ¡
be an in¯nite set of formulas. If every ¯nite subset of ¡
is satis¯able, then ¡ is satis¯able.

Theorem 14. (Compactness Theorem, Version II) Let ¡
be an in¯nite set of formulas, A any formula. If ¡ j= A,
then ¡ has a ¯nite subset ¢ such that ¢ j= A.

Theorem 15. If A_B is true in an interpretation I, and
if x does not occur free in A, then A_8xB is true in I.

Theorem 16. (Soundness Theorem for ¯rst order logic)
If ¡ ` A, then ¡ j= A.

Theorem 17. First order logic is consistent; i.e., for any
¯rst order language L, there is no formula A in L such
that ` A and ` :A.

Theorem 18. ¡ has a model i® it's consistent.

Theorem 19. The argument form A1; ¢ ¢ ¢ ; An ) B is
valid i® fA1; ¢ ¢ ¢ ; Ang ` B.
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