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History

Before Greeks (Euclid, Pythagoras): Knew a2 + b2 = c2 for right triangles, but without proof. Believed
¼ is rational!

Euclid: Took ¯ve intuitively obvious statements as axioms (postulates) of Geometry; proved everything
else from it.

For many years people tried to prove the ¯fth postulate from the ¯rst four, w/o success.

Recently (20th century?): proved ¯fth postulate independent of ¯rst four; i.e., can neither prove or
disprove it; how? Found model for ¯rst four + negation of ¯fth { called Noneuclidean Geometry
(spherical, hyperbolic). Hilbert found gaps in Euclid, but ¯xed everything, and made it completely
rigorous (points, lines unde¯ned terms; can use cups and chairs instead).

Other branches of math became rigorous too. But paradoxes existed.

Example 1. Some sets can be elements of themselves: S = set of all sets with ¸ two elements. Q:
jSj > 2? Yes. Q: S 2 S? According to def of S, yes.

Russell's paradox: Let T = set of all sets R s.t. R62 R.

Q: T 2 T? Ans: Y and N both give contradiction!

So early 20th century: lots of work establishing precise and rigorous foundations for all of mathematics:
Axiomatic Systems for every branch of math.

Why axioms? 1. Must accept somethings w/o pf { can't expect to prove everything. 2. Need precise
def of what is a pf. 3. Need to be able to check validity of any given pf; i.e., must have algorithm for
checking correctness of proofs.

Axioms for Arithmetic: PA{Peano Axioms.

Axioms for Set Theory: ZFC (Zermelo-Frankel Axioms, + axiom of Choice). All branches of mathe-
matics could be expressed in language of set theory, LST.

People were optimistic that Axiomatic Systems were the perfect approach.

Hilbert's \dream": Prove mathematics is consistent. In particular, prove arithmetic is consistent. Also
prove arithmetic is complete: every true statement can be proved in PA.

GÄodel's Theorems: Good news and bad news

Good news:

Theorem 1. (Completeness Theorem = Soundness + Adequacy) ¡ ` A i® ¡ j= A.

Bad news:

Theorem 2. If PA axioms are consistent, then there are true statements in arithmetic that cannot be
proved from PA. Furthermore, for any decidable set of axioms containing PA, the same conclusion holds.

Idea: This sentence is not provable.

Theorem 3. PA axioms cannot be proven (within PA) to be consistent.

Q: What do the above thms imply about models of PA? Ans: That the standard model is not the only
model!
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Example 2. A nonstandard model of arithmetic.

Domain: D = f(a; b)j(a 2 N ^ b = 0) _ (a 2 Z ^ b 2 Q ^ b > 0)g.
0: (0; 0).

S: S(a; b) = (a+ 1; b).

<: (a; b) < (c; d) i® b < d or b = d ^ a < c.

+: (a; b) + (c; d) = (a+ b; c+ d).

£: (a; b)£ (c; d) = (ab; ac+ bd).

Remark. It's not just that PA axioms are not well-chosen { they are well-chosen:

Theorem 4. (LÄowenheim-Skolem) Any set of ¯rst order axioms that has an in¯nite model has both
countable and uncountable models.

So models are never unique: whatever interpretation we're trying to \capture" with axioms, will always
have \nonstandard" models.

Example 3. Continuum Hypothesis (CH): 8S ½ R s.t. jSj = jNj _ jSj = jRj.
Obviously either CH or (: CH) is true in R. But:

GÄodel(1938): CH is consistent with ZFC.

Cohen (1963): (: CH) is consistent with ZFC.

2


