Page 74, Problem 18: Prove that $\{\land,\lor,\rightarrow\}$ is an inadequate set of connectives.

Proof. We will show that there is no formula A using the connectives in $\{\wedge, \lor, \rightarrow\}$ only, such that $H_A = H_{\neg}$; this shows that $\{\wedge, \lor, \rightarrow\}$ is not adequate.

Let A be an arbitrary formula. To show that $H_A \neq H_{\neg}$, it's enough to show $H_A(T) \neq H_{\neg}(T)$. We'll use induction on the number of symbols in A to show that $H_A(T) = T$, which is different from $H_{\neg}(T) = F$.

Base Step: If A has only one symbol, then it must be a propositional variable. So $H_A(T) = T$, as desired.

Induction Step: As induction hypothesis, assume that for any formula B with $\leq n$ symbols in it, $H_B(T) = T$. Suppose A has n + 1 symbols. Then, by rule F2, A is either $(B \vee C)$ or $(B \wedge C)$ or $(B \to C)$. So each of B and C has $\leq n$ symbols, and by the induction hypothesis, $H_B(T) = T$ and $H_C(T) = T$. From the definition of $\{\wedge, \lor, \rightarrow\}$ it follows that $H_A(T) = T$.