Last time we saw a very simplified example of a formal system: ADD. That was preparation for studying the formal system of Propositional Logic, which is what Chapters 2 and 3 are about.

(Review from Math 140) In logic we use the following symbols: \land for 'and'; \lor for 'or'; \neg for 'not'; \rightarrow for 'if...then' or 'implies', and \leftrightarrow for 'iff'.

These five symbols are called **logical connectives**.

Example 1. Rewrite each of the following using symbols for the logical connectives.

If $x \leq y$ and $y \leq x$ then x = y. Ans: $(x \leq y) \land y \leq x \rightarrow (x = y)$.

x is odd does not imply x is prime. Ans: $\neg(x \text{ is odd} \rightarrow x \text{ is prime})$.

Note. Some people use the symbol \sim instead of \neg .

Vocabulary

Conjunction = and. Disjunction = or.

Propostion = sentence.

A proposition of the form $A \to B$ is called a **conditional** or an **implication**. A is called the **an-tecedent**, B the **conclusion**.

A proposition that has no connectives is called a **simple proposition**.

Not in book: A proposition that has connectives is called a **compound proposition**.

When we just say 'proposition', we mean it can be either simple or compound.

Example 2. Let p_1 be the prop: x is prime; p_2 : x is odd; $p_3 + x = 2$.

Q: Is the following true? $p_1 \rightarrow (p_2 \lor p_3)$. Ans: Yes.

Q: Is the following true? $(p_2 \lor p_3) \to p_1$. Ans: No.

Q: Is the following true? $(p_2 \vee \to p_3)$. Ans: This is not a valid or well-formed formula; we can't ask if it's true or false; and we're not interested in it.

The language of Propositional Logic

(We'll see only symbols and formulas today; axioms and rules of inference later.)

Symbols: p_1, p_2, p_3, \cdots (called **propositional variables**); plus the five connectives: $\land \lor \neg \rightarrow \leftrightarrow$; plus left and right parentheses: ().

Formulas: First think about this: how would you write some simple rules describing which expressions are or aren't formulas?

We define which expressions are (well-formed) formulas inductively (or recursively), by the following three rules:

F1: Each proposition variable is a formula.

F2: Given two formulas A and B, each of the following is a formula: $(A \land B)$, $(A \lor B)$, $\neg A$, $(A \to B)$, $(A \leftrightarrow B)$.

(F3: Only expressions built by using F1 and F2 are formulas.)

Example 3. Check which of the three props in Example 2 is a formula according to F1 and F2.

Note. For the sake of convenience we: often omit the outermost parentheses; sometimes use [] instead of (); sometimes omit parentheses for consecutive \lor 's or \land 's; use other letters, such as p, q, r.

-1

For example: $(p \lor q \lor r) \leftrightarrow [\neg p \rightarrow (q \lor r)]$. Q: What would be the "strictly correct way" of writing this formula?

Valid or invalid arguments

Example 4. Which of the following are valid arguments?

- 1. If something is round, then it bounces.
- 2. Blah is round.
- 3. \therefore blah bounces.

Ans: Valid. If 1 and 2 are true, then 3 must be true.

- 1. If something is round, then it bounces.
- 2. Blah bounces.
- 3. : blah is round.

Ans: Invalid argument. 1 and 2 do not imply 3.

- 1. $(p \lor q) \to r$. 2. $r \to t$.
- 3. $\therefore (p \lor q) \to t.$

Ans: Valid.

1. $p \to (q \to r)$. 2. $\neg p \to t$. 3. $\therefore \neg t \to (q \lor \neg r)$.

Ans: Valid.