Closed book. Closed Notes. 20 points per problem. Please write very legibly.

- 1. (20 points) Suppose A, B, and C are noncollinear points and L is a line not containing any of them. Prove that if L intersects one of the segments of the triangle ABC, then it intersects a second one.
- 2. (20 points) Let ABC be a triangle. Prove that if AB > AC, then $m \angle C > m \angle B$. (Hint: Let D be a point between A and B such that AD = AC.)
- 3. (20 points) Let ABC be a triangle. Let P, Q, R, and S be four distinct points such that
 - (a) PQ = BC,
 - (b) R and S are on the same side of \overleftrightarrow{PQ} ,
 - (c) $m \angle RPQ = m \angle B$, and
 - (d) $m \angle SQP = m \angle C$.

Prove that $\overrightarrow{PR} \cap \overrightarrow{QS} \neq \emptyset$.