1
Computable functions

We begin this chapter with a discussion of the fundamental idea of an
algorithm or effective procedure. In subsequent sections we describe the
way in which this idea can be made precise using a kind of idealised
computer; this lays the foundation for a mathematical theory of compu-
tability and computable functions.

1. Algorithms, or effective procedures

When taught arithmetic in junior school we ali learnt to add and
to multiply two numbers. We were not merely taught that any two
numbers have a sum and a product — we were given methods or rules for
finding sums and products. Such methods or rules are examples of
algorithms or effective procedures. Their implementation requires no
ingenuity or even intelligence beyond that needed to obey the teacher’s
instructions.

More generally, an algorithm or effective procedure is a mechanical
rule, or automatic method, or programme for performing some mathe-
matical operation. Some more examples of operations for which easy
algorithms can be given are

(1.1) (a) given n, finding the nth prime number,
{b) differentiating a polynomial,
(¢} finding the highest common factor of two numbers {the
Euclidean algorithm},
(d) given two numbers x, y deciding whether x is a multiple of y.

Algorithms can be represented informally as shown in fig. 1a.
The input is the raw data or object on which the operation is to be
performed (e.g. a polynomial for (1.1) (b), a pair of numbers for (1.1) (¢)
and (d)} and the output is the result of the operation (e.g. for (1.1} (), the
derived polynomial, and for (1.1) (d}, the answer yes or no). The output is
produced mechanically by the black box ~ which could be thought of as a

Fig. la.
Input Output

Black box

iculating machine, a computer, or a schoolboy correctly taught —or
ven a very clever dog trained appropriately. The algorithm is the
rocedure or method that is carried out by the black box to obtain the
utput from the input.

When an algorithm or effective procedure is used to calculate the
alues of a numerical function then the function in question is described
y phrases such as effectively calculable, or algorithmically computable, or
Fectively computable, or just computable. For instance, the functions xy,

[CF(x, y) = the highest common factor of x and y, and f(n)=the nth

rime number, are computable in this informal sense, as already
idicated. Consider, on the other hand, the following function:

1 if there is a run of exactly » consecutive 7s

gln) = in the decimal expansion of ,

0 otherwise.
fost mathematicians would accept that g is a perfectly legitimate
mnction. But is g computable? There is a mechanical procedure for
enerating successive digits in the decimal expansion of #,' so the
sliowing ‘procedure’ for computing g suggests itself.

‘Given n, start generating the decimal expansion of m, one digit at a
me, and watch for 7s. If at some stage a run of exactly n consecutive 7s
as appeared, then stop the process and put g(n) = 1. If no such sequence
f 7s appears put g(n)=90.

The problem with this ‘procedure’ is that, if for a particular # thereisno
equence of exactly n consecutive 7s, then there is no stage in the process
/here we can stop and conclude that this is the case. For all we know at
ny particular stage, such a sequence of 7s could appear in the part of the
xpansion of « that has not yet been examined. Thus the ‘procedure’ will
o on for ever for inputs n such that g(n)=0; so it is not an effective
rocedure. {It is conceivable that there is an effective procedure for
omputing g based, perhaps, on some theoretical properties of , At the
resent time, however, no such procedure is known.)

' This will be established in chapter 3 (example 7.1(3)).

Z 1he uniniiea regisier macning b4

This example pinpoints two features implicit in the idea of an effective
procedure — namely, that such a procedure is carried out in a sequence of
stages or steps (each completed in a finite time), and that any output
should emerge after a finite number of steps.

So far we have described informally the idea of an algorithm, or
effective procedure, and the associated notion of computable function.
These ideas must be made precise before they can become the basis fora
mathematical theory of computability — and non-computability.

We shall make our definitions in terms of a simple ‘idealised computer’
that operates programs, Clearly, the procedures that can be carried out by
a real computer are examples of effective procedures. Any particular real
computer, however, is limited both in the size of the numbers that it can
receive as input, and in the amount of working space available; it is in
these respects that our ‘computer’ will be idealised in accordance with the
informal idea of an algorithm. The programs for our machine will be
finite, and we will require that a completed computation takes only a
finite number of steps. Inputs and outputs will be restricted to natural
numbers; this is not a significant restriction, since operations involving
other kinds of object can be coded as operations on natural numbers. (We
discuss this more fully in § 5.)

2. The unlimited register machine
Our mathematical idealisation of a computer is called an
unlimited register machine (URM); it is a slight variation of a machine
first conceived by Shepherdson & Sturgis [1963]. In this section we
describe the URM and how it works; we begin to explore what it can do in
§3. . ‘
The URM has an infinite number of registers labelled Ry, Ry, R, . . .,
each of which at any moment of time contains a natural number; we
denote the number contained in R, by r.. This can be represented as
follows

Ri R Ry Ri Rs R¢ R; ..

n 2 ra rs s L£3 ry

The contents of the registers may be altered by the URM in response to
certain instructions that it can recognise. These instructions correspond to
very simple operations used in performing calculations with numbers, A
finite list of instructions constitutes a program. The instructions are of four
kinds, as follows.

0 instructions Yor each n=1,2,3,... there is a zero instruction
1). The response of the URM to the instruction Z(n) is to change the
tents of R, to 0, leaving all other registers unaltered.

Example Suppose that the URM is in the f{following
figuration
mN_ mﬂu mNu mNb ..mNu wm

9+ 6 512317 0]...

| obeys the zero instruction Z(3). Then the resulting configuration is

9161012317 07]...

zresponse of the URM to a zero instruction Z{n)is denoted by 0> R,,,
r. = (} {this is read r, becomes 0).

rcessor instructions For each n=1,2,3,... there is a successor
riection S(n). The response of the URM to the instruction S(n) is to
rease the number contained in R, by 1, leaving all other registers
tered.

Example Suppose that the URM is in the configuration (%)
we and obeys the successor instruction $(5). Then the new con-
iration is

R; R; Ry Ry Rs Rg

) 9 16| 0}23;8{0¢]...

= effect of a successor instruction S{n) is denoted by r, +1>R,, or
=y, +1 (r, becomesr, +1).

wnsfer instructions Foreachm =1,2,3,...andn=1,2,3,...there
a transfer instruction T(m, n). The response of the URM to the
truction T{m, n) is to replace the contents of R,, by the number r,
itained in R, fi.e. transfer r, into R,); all other registers (including
)} are unaltered.

Example Suppose that the URM is in the configuration (**)
wve and obeys the transfer instruction T(5, I}. Then the resulting

Ar A PEL A PRERIIBEILAL TH RIS IR LG 1l

configuration is
m_ mﬂu uﬂu mﬂa —.ﬂu mﬂm

B 16 |0 }123 807]...

The response of the URM to a transfer instruction T(m, n} is denoted by
I = Ry, 01 1y = 1, (1, Decomes ro).

Jump instructions In the operation of an informal algorithm there may
be a stage when alternative courses of action are prescribed, depending
on the progress of the operation up to that stage. In other situations it may
be necessary to repeat a given routine several times. The URM is able to
reflect such procedures as these using jump instructions ; these will allow
jumps backwards or forwards in the list of instructions. We shall, for
example, be able to use a jump instruction to produce the following
response: :

‘1f r2 = rg, go to the 10th instruction in the program; otherwise, go
on to the next instruction in the program.’

The instruction eliciting this response will be written J(2, 6, 10).

Generally, foreachm=1,2,3,...,n=1,2,3,.. . andg=1,2,3,...
there is a jump instruction J(m, n, q). The response of the URM to the
instruction J(m, n, q) is as follows, Suppose that this instruction is
encountered in a program P. The contents of R,, and R, are compared,
but all registers are left unaltered. Then

if 7 = rn, the URM proceeds to the gth instruction oqw P:
if £ # r,, the URM proceeds to the next instruction in P,

If the jump is impossible because P has less than ¢ instructions, then the
URM stops operation.

Zero, successor and transfer instructions are called arithmetic instruc-
tions.

We summarise the response of the URM to the four kinds of instrue-
tion in table 1.

Computations To perform a computation the URM must be provided
with a program P and an initial configuration-ie. a sequence
@i, az, a3, ... of natural numbers in the registers Ry, R, Ra,....
Suppose that P consists of s instructions [}, I, .. ., I,. The URM begins
the computation by obeying I,, then I», I;, and so on unless a jump

Table 1

Type of instruction Instruction Response of the URM

Zero Z(n) Replace r, by 0. (0» R, or r, =0}

Successor S(n) Addltwor,. (r.+1-R, orr,=r,+
1)

Transfer T{m, n} Replacer, byr.. (r.=» R,orr,:=1r,)

Jump Jm, n, q) 1f r,, = r., jump to the gth instruction;

otherwise go on to the next instruc-
tion in the program,

instruction, say J(m, n, g), is encountered. In this case the URM proceeds
to the instruction prescribed by J(m, n, ¢) and the current contents of the
registers R,, and R,. We illustrate this with an example.

2.1. Example
Consider the following program:

I, ¥K1,2,6)
I S(2)
Iy §8(3)

L 1(1,2,6)
Is J(1,1,2)
I T3, 1)

Let us consider the computation by the URM under this program with
initial configuration

R; R, R; R, Rs
9 7 0 0 0

(We are not concerned at the moment about what function this program
actually computes; we wish to illustrate the way in which the URM
operates programs in a purely mechanical fashion without needing to
understand the algorithm that is being carried out.)

We can represent the progress of the computation by writing down the
successive configurations that occur, together with the next instruction to
be obeyed at the completion of each stage.

L R LIT WIRLIILEICW FOREMICT THULTLNT 12

R, R; Ry Ry Rs Next instruction
Initial
config- | 9 7{0}1 0670 BRI A
uration
S 7 0 0 3] I (since ry #)
9 8 o 1] 0 I
9 8 1 0 0 I
9 8 1 o 0 Is (since ri#rs)
9 8 1 0 0 I (since ry=ry)

and so on. (We shall continue this computation later.)

We can describe the operation of the URM under a program P=
I, I, ..., I in general as follows. The URM starts by obeying instruc-
tion [,. At any future stage in the computation, suppose that the URM is
obeying instruction f.. Then having done so it proceeds to the nexr
instruction in the computation, defined as follows:

if I, is not a jump instruction, the next instruction is Iy .y

.] N P/ ifr,=r,,
if I, = X{m, n, q) the next instruction is * N BT h....
i,y otherwise,

where r., 1. are the current contents of R,, and R,

The URM proceeds thus as long as possible; the computation stops
when, and only when, there is no next instruction; i.e. if the URM has just
obeyed instruction I, and the ‘next instruction in the computation’
according to the above definition is J, where v > 5. This can happen in the
following ways:

(i) if k =5 (the last instruction in P has been obeyed) and I, is an
arithmetic instruction,
() if L =J(m,n, q), r, =r, and g >,
(i) if L =J(m, n, g}, rm #r, and k =5,
We say then that the computation stops after instruction J,; the final

configuration is the sequence ry, 73, rs, . . ., the contents of the registers at
this stage. .

Let us now continue the computation begun in example 2.1.

Example 2.1 {continued)

R, . R: R; Rs Rs Next instruction

9 8 1 0 0 N

9 9 1 0 0 Iy

9 9 2 #] 0 I

9 9 2 0 0 I (since ry=1r3)
Final
config- | 2 9 2 ¢) I3: sTOP.
uration

This computation stops as indicated because there is no seventh
instruction in the program, ‘

2.2 Exercise
Carry out the computation under the program of example 2.1
with initial configuration 8,4, 2,0,0,...

The essence of a program and the progress of computations under it is
often conveniently described informally using a flow diagram. For
example, a flow diagram representing the program of example 2.1 is given
in fig. 1b. (We have indicated alongside the fow diagram the typical
configuration of the registers at various stages in a computation.} Note the
convention that tests or questions {corresponding to jump instructions)
are placed in diamond shaped boxes.

The translation of this flow diagram into the program of exercise 2.1 is
almost self-explanatory. Notice that the backwards jump on answer ‘No’
to the second question ‘r.=r;?’ is achieved by the fifth instruction
J(1, 1, 2} which is an unconditional jump: we always have ry = ry, so this
instruction causes a jump to I, whenever it is encountered.

When writing a program to perform a given procedure it is often
helpful to write an informal flow diagram as an intermediate step: the
translation of a flow diagram into a program is then usually routine.

m mres erlerecrresvey U mruRLr lisueUdsE L 10

Fig. 15. Flow diagram for the program of example 2.1.

START
Typical configuration
R, R; R,
Yes
BBE
No
ry=ra+1
h 4
ry=rg+l
Alter k cycles round the loop
in this program:
No
Yes
ffx=y+k:
=R,
STOP

There are, of course, computations that never stop: for example, no
computation under the simple program $(1), J(1,1,1) ever stops.
Computation under this program is represented by the flow diagram in
fig. Lc. The jump instruction invariably causes the URM to return, or loop
back, to the instruction S(1).

There are more sophisticated ways in which a computation may run for
ever, but always this is caused essentially by the above kind of repetition
or looping back in the execution of the program.

Fig. lc.
START

r=n+l

23 Exercise
Show that the computation under the program of example 2.1
with initial configuration 2,3, 0,0, 0, . . . never stops.

The question of deciding whether a particular computation eventually
stops or not is one to which we will return later,
Some notation will help us now in our discussion. Let a4, a,, a3, . . . be
an infinite sequence from N and let P be a program; we will write
(i) P{ay, az, as,...) for the computation under P with initial
configuration a,, 212, 23,...;
(i) Plai, az a3,...)l to mean that the computation
P(ai, az, a,, . . .) eventually stops;
(iii) Plai, az, a3,...)1 to mean that the computation
Play, aa, a3, ...) never stops.
In most initial configurations that we shall consider, all but fnitely
nany of the a; will be 0. Thus the following notation is useful. Let
7, d2,. .., G, be a finite sequence of natural numbers; we write
(iv) P(ay, as, ..., a,) for the computation
mﬁhﬂ.mm....uﬁio‘o_ca...u,

Hence
v} Play, as,...,a,)| meansthat Pla,, 42,...,a.,,0,0,0,...)};
(vi) Pla, az,..., a,)] means that P(a,, 22,...,4,,0,0,0,...)].

Often a computation that stops is said to converge, and one that never
stops is said to diverge.

3. URM-computable functions , ‘

Suppose that fis a function from N" to N {n = 1); what does it
nean to say that f is computable by the URM? It is natural to think in
‘erms of computing a value fta,,..., a.) by means of a program P on

nitial configuration a;,asz,...,a,0,0,.... That is, we consider
:omputations of the form P{a:, az2,...,a.). If any such computation

I Unyvi-compuriaote junchiions 1/

stops, we need to have a single number that we can regard as the output or
result of the computation; we make the convention that this is the number
ry finally contained in R;. The final contents of the other registers can be
regarded as rough work or jottings, that can be ignored once we have the
desired result in R;.

Since a computation P(a,, ..., a,) may not stop, we can allow our
definition of computability to apply to functions f from N" to N whose
domain may not be all of N"; i.e. partial functions. We shall require that
the relevant computations stop (and give the correct result!} precisely for
inputs from the domain of f. Thus we make the following definitions.

31 Definitions
Let f be a partial function from N” to N.

(a) Suppose that P is a program, and let a4, d2,...,a,, beN,
(i} The computation Pla;, az,...,a,) converges to b -if
Pa,, as, ..., a,)| and in the final configuration b is in R,. We
write this Play, ..., a. \lb;
(ii) P URM-computes f if, for every a,,...,anb
Play,...,a.)lb if and only if (ay,...,a.)eDom(f} and
flay, ..., a,) = b. (In particular, this means that P(ay, .. ., a,)| if
and only if (ay,..., a,) € Dom(f).)

(6} The function f is URM-computable if there is a program that

URM-computes f.

The class of URM-computable functions is denoted by %, and n-ary
URM-computable functions by %,. From now on we will use the term
computable to mean URM-computable, except in chapter 3 where other
notions of computability are discussed.

We now consider some easy examples of computable functions.

32 Examples
(a) x+y.

We obtain x+y by adding 1 to x (using the successor instruction) ¥y
times. A program to compute x +y must begin on initial configuration
%y 0,0,0,...; our program will keep adding 1 to ry, using R; as a
counter to keep a record of how many times r, is thus increased. A typical
configuration during the computation is

~N~ mNN Hﬂw mﬂa w.m
x+k{y |l k|o] oj...

