Math 114                                               Calculus I                                               Fall 2004
Week 10 Lab

Newton’s Method

Names of the participants in your group:

Introduction
In class you learned that an estimate 
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In this lab, you will use Excel to implement Newton’s method to find roots of several equations, and you will investigate how quickly the estimates converge to the root.

Part 1: Some Equations to Solve
1.
(a)
Use Excel to implement Newton’s Method to find a solution to the equation 
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  correct to 8 decimal places.  Use initial approximation 
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.  (CAUTION: Be careful to accurately enter your formulas into Excel.  Missing parentheses will cause problems!  And remember that in Excel, multiplication must be explicitly indicated with “*”.)  In the space below, record the recursion formula, 
[image: image8.wmf]1

x
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 and then your final approximation.  How many steps of Newton’s Method did you need to get the desired accuracy? 


(b)
Now try to use Newton’s Method to approximate a solution to 
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 with 
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.  Explain why you run into trouble.

2.
Use Newton’s Method to approximate the roots of each equation, correct to 8 decimal palces.  In the space provided below each equation, record the recursion formula for Newton’s Method, 
[image: image12.wmf]1

0

,

x

x

, your final approximation and the number of steps you needed to get the desired accuracy.  (To find an initial approximation 
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, you can make a reasonable guess or use the TRACE function on your graphing calculator.)
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3.
Use Newton’s Method to approximate 
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 correct to 8 decimal places.  (You need to identify the function 
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 to which you are applying Newton’s Method.)

Part 2: Rates of Convergence
All four of the functions:
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have a zero at 
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.  In this part, you will investigate how quickly Newton’s method gives you the root 
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1.
Open the Excel spreadsheet for this lab (Lab 10).  You’ll find four worksheets, one for each of the functions above.  For each of the four functions, write below the recursion formula for Newton’s method.

2.
On each worksheet fill in the table with the given headings:



n


x_n


E_n = r – x_n


E_n / E_(n – 1)

In the first column n records the number of iterations performed.  The second column records the approximation of the root found by n iterations of Newton’s method.  The third column records the error 
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 for the nth iteration:  the true value (r = 1) minus the estimate (x_n).  The fourth column records 
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, the ratio of the nth error with the preceding (n-1)th error.  Extend the table far enough so that the iterates x_n are as close to the root r = 1 as they will ever be before roundoff errors become prominent.

3.
Contrast the convergence of the iterates for 
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4.
Recall that the multiplicity of a root 
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 for a polynomial equation 
[image: image33.wmf]0

)

(

=

x

p

 is the highest power 
[image: image34.wmf]m

 such that 
[image: image35.wmf]m

r

x

)

(

-

 is a factor of 
[image: image36.wmf])

(

x

p

.  What is the multiplicity 
[image: image37.wmf]m

 of the root 
[image: image38.wmf]1

=

r

 for each of the functions 
[image: image39.wmf])

(

x

g

, 
[image: image40.wmf])

(

x

h

 and 
[image: image41.wmf])

(

x

k

?



for 
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5.
For each of 
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6.
Conjecture a simple relationship between the multiplicity of the root and the limit of the ratio of errors 
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